Exemples de suites récurrentes de polygones du plan

Notations, valables pour l'ensemble du sujet :

- Pour tout $\theta \in \mathbb{R}$, on note $e^{i\theta} = \cos \theta + i \sin \theta$.
- k désigne un entier naturel supérieur ou égal à 3.
- $M_k(\mathbb{C})$ est l'ensemble des matrices à coefficients complexes possédant k lignes et k colonnes.
- Pour toute matrice M de $M_k(\mathbb{C})$, on note tM la transposée de M.
- Si $(a_0,...,a_{k-1}) \in \mathbb{C}^k$ on note:

$$M(a_0,...,a_{k-1}) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ a_0 & a_1 & \cdots & \cdots & a_{k-2} & a_{k-1} \end{bmatrix} \in M_k(\mathbb{C}).$$

Par exemple, lorsque k = 3,

$$M(a_0,a_1,a_2) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_0 & a_1 & a_2 \end{bmatrix}.$$

Définition : on dit qu'un endomorphisme u de \mathbb{C}^k est canoniquement associé à une matrice M de $M_k(\mathbb{C})$ si et seulement si M est la matrice de u dans la base canonique de \mathbb{C}^k .

Partie I - Étude des matrices compagnes

I.A - Cas général

I.A.1) Soit $(a_0,...,a_{k-1}) \in \mathbb{C}^k$. On note φ l'endomorphisme canoniquement associé à $M(a_0,...,a_{k-1})$. Calculer le déterminant de φ . Déterminer le rang, l'image et le noyau de φ .

I.A.2) Soit $(a_0,...,a_{k-1}) \in \mathbb{C}^k$. Montrer que $M(a_0,...,a_{k-1})$ est semblable à la matrice :

$$N = \begin{bmatrix} a_{k-1} & a_{k-2} & \cdots & a_0 \\ 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots &$$

- I.A.3) L'énoncé "toute matrice non nulle élément de $M_k(\mathbb{C})$ est semblable à une matrice de la forme $M(a_0,...,a_{k-1})$ " est-il vrai ? Justifier la réponse.
- I.A.4) L'énoncé "toute matrice de la forme $M(a_0,...,a_{k-1})$ est diagonalisable" est-il vrai ? Justifier la réponse.
- I.A.5) Soit $(a_0,\dots,a_{k-1})\in\mathbb{C}^k$. Rappeler la définition du polynôme caractéristique de $M(a_0,\dots,a_{k-1})$. On pose

$$Q(X) = X^k - \sum_{r=0}^{k-1} a_r X^r.$$

Déterminer, à l'aide de Q(X) , le polynôme caractéristique de $M(a_0,\dots,a_{k-1})$.

- I.A.6) Soit $N \in M_k(\mathbb{C})$. On suppose que N est semblable à une matrice de la forme $M(a_0,...,a_{k-1})$. Le k-uplet $(a_0,...,a_{k-1})$ est-il unique ?
- I.A.7) Soit $(a_0,...,a_{k-1}) \in \mathbb{C}^k$. Soit λ une valeur propre de $M(a_0,...,a_{k-1})$. Donner une base du sous-espace propre E_λ associé à cette valeur propre. Donner une condition nécessaire et suffisante portant sur les valeurs propres de $M(a_0,...,a_{k-1})$ pour que $M(a_0,...,a_{k-1})$ soit diagonalisable.

I.B - Étude d'un cas particulier

On fixe $(a_0,...,a_{k-1}) \in \mathbb{R}^k$ tel que

$$\sum_{r=0}^{k-1} a_r = 1.$$

On suppose de plus que : $\forall r \in \{0,...,k-1\}, a_r > 0$.

On pose

$$Q(X) = X^{k} - \sum_{r=0}^{k-1} a_{r}X^{r}.$$

I.B.1) Montrer que 1 est une valeur propre de $M(a_0,...,a_{k-1})$ et indiquer un vecteur propre associé.

Montrer que les racines de Q sont toutes de module inférieur ou égal I.B.2) à 1.

I.B.3)

a) Soit $\theta \in \mathbb{R}$ tel que $Q(e^{i\theta}) = 0$. Montrer que

$$\sum_{r=0}^{k-1} a_r \cos((r-k)\theta) = 1.$$

- b) En déduire que 1 est la seule racine de Q de module 1.
- I.B.4) Montrer que 1 est une racine simple de Q.

Partie II - Présentation des exemples

Notations valables pour toute la suite du sujet :

- P est un plan vectoriel euclidien orienté muni d'un repère orthonormé direct $R = (0, \vec{i}, \vec{j}).$
- On rappelle que si A est un point de P de coordonnées $(x, y) \in \mathbb{R}^2$, le complexe z = x + iy est appelé l'affixe de A et A est appelé l'image du complexe z.
- On appelle polygone d'ordre k tout k-uplet de points de P.

II.A - Préliminaire

Soient $(A_0,...,A_{k-1})$ un polygone d'ordre k et $(a_0,...,a_{k-1}) \in \mathbb{R}^k$ tel que

$$\sum_{r=0} a_r \neq 0.$$

On rappelle que le barycentre des points $A_0,...,A_{k-1}$ affectés des coefficients $a_0,...,a_{k-1}$ est l'unique point G de P vérifiant

$$\sum_{r=0}^{k-1} a_r \overrightarrow{GA}_r = \overrightarrow{0}.$$

Lorsque, pour tout $r \in \{0,...,k-1\}$, $a_r = 1$, on dit que G est l'isobarycentre des points $A_0,...,A_{k-1}$. Donner une expression du vecteur

$$\overrightarrow{OG}$$
 en fonction des vecteurs $\overrightarrow{OA_0}$, $\overrightarrow{OA_1}$,..., $\overrightarrow{OA_{k-1}}$.

On note $z_0,...,z_{k-1}$ les affixes des points $A_0,...,A_{k-1}$. Déterminer l'affixe de G en fonction des complexes $z_0,...,z_{k-1}$.

Fixons une suite de polygones d'ordre k de P, notée $(p_n)_{n\in\mathbb{N}}$. Pour tout $n\in\mathbb{N}$, posons $p_n=(A_0^{(n)},...,A_{k-1}^{(n)})$ et notons $z_0^{(n)},...,z_{k-1}^{(n)}$ les affixes des points $A_0^{(n)},...,A_{k-1}^{(n)}$.

Pour tout $n \in \mathbb{N}$, on pose $Z_n = (z_0^{(n)}, ..., z_{k-1}^{(n)})$. Ainsi $(Z_n)_{n \in \mathbb{N}}$ est une suite d'éléments de \mathbb{C}^k .

II.B - Exemple 1

Soit $(a_0,...,a_{k-1}) \in \mathbb{R}^k$ tel que

$$\sum_{r=0}^{k-1} a_r = 1.$$

On suppose que pour tout $n \in \mathbb{N}$, le polygone p_{n+1} est construit à partir du polygone p_n selon le procédé suivant :

- pour tout r∈ {0,...,k-2}, on pose A_r⁽ⁿ⁺¹⁾ = A_{r+1}⁽ⁿ⁾,
 A_{k-1}⁽ⁿ⁺¹⁾ est le barycentre des points A₀⁽ⁿ⁾,...,A_{k-1}⁽ⁿ⁾ affectés des coefficients $a_0,...,a_{k-1}$.
- II.B.1) Montrer qu'il existe une matrice $M \in M_k(\mathbb{C})$ telle que, en écrivant Z_n et Z_{n+1} sous la forme de matrices colonnes : $\forall n \in \mathbb{N}$, $Z_{n+1} = MZ_n$. Exprimer Z_n en fonction de n, de Z_0 et de M.
- Faire un schéma représentant un polygone p_0 d'ordre 3 (un triangle) et les polygones p_1 et p_2 lorsque $a_0 = a_1 = a_2 = 1/3$.

II.C - Exemple 2

Soit $\lambda \in \mathbb{R}$. On suppose que pour tout $n \in \mathbb{N}$ le polygone p_{n+1} est construit à partir de p_n selon le procédé suivant :

- pour tout $r \in \{0,...,k-2\}$, $A_r^{(n+1)}$ est le barycentre des deux points $A_r^{(n)}$ et $A_{r+1}^{(n)}$ affectés des coefficients respectifs λ et $1-\lambda$,
- $A_{k-1}^{(n+1)}$ est le barycentre des deux points $A_{k-1}^{(n)}$ et $A_0^{(n)}$ affectés des coefficients respectifs λ et $1 - \lambda$.
- II.C.1) Montrer qu'il existe une matrice $M \in M_k(\mathbb{C})$ telle que, en écrivant Z_n et Z_{n+1} sous la forme de matrices colonnes : $\forall n \in \mathbb{N}$, $Z_{n+1} = MZ_n$. Exprimer Z_n en fonction de n, de Z_0 et de M.
- II.C.2) Faire un schéma représentant un polygone ρ_0 d'ordre 5 et les polygones p_1 , p_2 , p_3 et p_4 lorsque $\lambda = 1/2$.

II.D - Un peu d'informatique

On garde les hypothèses et les notations du II.C. On suppose que l'on dispose d'un langage informatique présentant les caractéristiques suivantes :

- l'instruction A:=B permet d'affecter à la variable A la valeur de l'expression B, qui peut notamment désigner un point de P.
- dans une série d'instructions, ces dernières sont séparées par des ";".

- si S(i) désigne une série d'instructions qui dépend d'une variable entière i, et si m et n sont deux entiers tels que $m \le n$, l'instruction for i from m to n do S(i) od i effectue S(m), puis S(m+1), ..., puis S(n).
- l'instruction
 if test then <série d'instructions> fi ;
 effectue la série d'instructions lorsque le test est vrai et n'effectue rien sinon.
- si A et B sont des points de P, f(A,B,λ) désigne le barycentre de A et de B affectés des coefficients λ et 1 λ.
- II.D.1) À l'aide des seules caractéristiques du langage précisées ci-dessus, écrire dans ce langage une série d'instructions dont l'exécution a pour effet de stocker dans les variables $A_0, A_1, \ldots, A_{k-1}$ les points du polygone p_{100} , en supposant qu'initialement les variables $A_0, A_1, \ldots, A_{k-1}$ contiennent les valeurs des points du polygone p_0 . On prendra soin d'utiliser le moins de variables supplémentaires possible.
- II.D.2) À l'aide des seules caractéristiques du langage précisées ci-dessus, en supposant qu'initialement les variables $A_0, A_1, \ldots, A_{k-1}$ contiennent les valeurs des points d'un polygone p, écrire dans ce langage une série d'instructions qui stockent dans la variable OK la valeur 0 si le polygone contient au moins deux points égaux et la valeur 1 si les points du polygone sont deux à deux distincts.

Partie III - Étude des exemples

III.A - Étude de l'exemple 1

On reprend les notations de l'exemple 1 (cf II.B). Ainsi $(a_0,...,a_{k-1})$ est un élément de \mathbb{R}^k tel que

$$\sum_{r=0}^{k-1} a_r = 1.$$

On suppose de plus que $\forall r \in \{0,...,k-1\}$, $a_r > 0$. On pose

$$Q(X) = X^k - \sum_{r=0}^{k-1} a_r X^r$$

et on suppose que toutes les racines de Q sont simples.

- III.A.1) Montrer que la suite $(Z_n)_{n\in\mathbb{N}}$ admet une limite lorsque n tend vers $+\infty$ que l'on notera Z_∞ .
- III.A.2) Montrer que Z_{∞} est colinéaire au vecteur de \mathbb{C}^k égal à (1,1,...,1). III.A.3)
- a) Montrer que 1 est une valeur propre de ${}^{t}M(a_0,...,a_{k-1})$.

- b) Soit $V \in \mathbb{C}^k$ un vecteur propre de ${}^tM(a_0,...,a_{k-1})$ pour la valeur propre 1 . Soit $n \in \mathbb{N}$. En écrivant V, Z_n et Z_{n+1} sous la forme de matrices colonnes, montrer que ${}^tVZ_n = {}^tVZ_{n+1}$.
- c) En déduire la valeur de Z...
- d) Quelle est l'interprétation géométrique de ce résultat, relativement à la suite des polygones $(\rho_n)_{n \in \mathbb{N}}$? (On introduira un barycentre).

III.B - Étude de l'exemple 2

III.B.1) Préliminaires

a) Soit la matrice

$$J = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots$$

et $u \in L(\mathbb{C}^k)$ l'endomorphisme canoniquement associé à J.

On note aussi $c = (c_0, ..., c_{k-1})$ la base canonique de \mathbb{C}^k .

Calculer $u(c_0),...,u(c_{k-1})$.

Soit $r \in \{0,...,k\}$. Calculer $u^r(c_0),...,u^r(c_{k-1})$.

En déduire la valeur de J^r pour tout $r \in \{0,...,k\}$.

- b) Déterminer les valeurs propres et les sous-espaces propres de J.
- c) Posons $\omega = e^{2i\pi/k}$. Pour tout $r \in \{0,...,k-1\}$ on pose

$$e_r = \frac{1}{\sqrt{k}} \begin{bmatrix} 1 \\ \omega^r \\ \omega^2 r \\ \dots \\ \omega^{(k-1)r} \end{bmatrix}.$$

Montrer que $e = (e_0, ..., e_{k-1})$ est une base de \mathbb{C}^k qui est orthonormée pour le produit scalaire canonique de \mathbb{C}^k . Calculer la matrice de u dans la base e.

Pour toute la suite du problème, on notera A la matrice de passage de la base cvers la base e.

d) Soit
$$(a_0,...,a_{k-1}) \in \mathbb{C}^k$$
. On note
$$R(X) = \sum_{r=0}^{k-1} a_r X^r.$$

Préciser la forme de la matrice R(J) et la diagonaliser.

III.B.2) On reprend les notations de l'exemple 2 (cf. II.C) et on suppose jusqu'à la fin du sujet que $\lambda = 1/2$.

- a) Montrer que la suite $(Z_n)_{n \in \mathbb{N}}$ admet une limite lorsque n tend vers $+\infty$, que l'on notera Z_∞ , et montrer que, en représentant Z_∞ et Z_0 sous la forme de matrices colonnes, $Z_\infty = ADA^{-1}Z_0$, où D est une matrice diagonale à déterminer.
- b) Si Z et Z' sont deux éléments de \mathbb{C}^k , on note $\langle Z,Z'\rangle$ leur produit scalaire canonique. Montrer que

$$Z_0 = \sum_{r=0}^{k-1} \langle e_r, Z_0 \rangle e_r.$$

En déduire que $Z_{\infty} = \langle e_0, Z_0 \rangle e_0$.

- c) Quelle est l'interprétation géométrique de ce résultat, relativement à la suite des polygones $(p_n)_{n\in\mathbb{N}}$?
- III.B.3) Déterminer une matrice C diagonale, telle que pour tout $n \in \mathbb{N}$, en représentant Z_n , Z_∞ et Z_0 sous la forme de matrices colonnes,

$$Z_n - Z_m = AC^n A^{-1} Z_0.$$

III.B.4)

a) Soit $s \in \{0,...,2k-1\}$. Montrer que la limite de la suite

$$\left(\left(\cos\frac{\pi}{k}\right)^{-2nk-s}(Z_{2nk+s}-Z_{\infty})\right)_{n\in\mathbb{I}\mathbb{N}}$$

vaut $A\Delta_sA^{-1}Z_0$ où Δ_s est la matrice diagonale dont les coefficients diagonaux sont

$$0, e^{is\pi/k}, 0, \dots, 0, e^{-is\pi/k}$$
.

b) Soit *s* ∈ {0,...,2k - 1}. Montrer que

$$A\Delta_s A^{-1} Z_0 = \langle e_1, Z_0 \rangle e^{is\pi/k} e_1 + \langle e_{k-1}, Z_0 \rangle e^{-is\pi/k} e_{k-1}.$$

c) Montrer qu'il existe $(c, d) \in \mathbb{C}^2$ tel que pour tout $r \in \{0, ..., k-1\}$ et pour tout $s \in \{0, ..., 2k-1\}$

$$\lim_{n \to +\infty} \left(\left(\cos \frac{\pi}{k} \right)^{-2nk-s} (z_r^{2nk+s} - z_G) \right) = e^{i\pi(2r+s)/k} c + e^{-i\pi(2r+s)/k} d,$$

où z_G est l'affixe de l'isobarycentre noté G des points constituant le polygone initial ρ_0 .

III.B.5)

- a) Montrer qu'il existe un endomorphisme v de P dans P tel que pour tout $r \in \{0,...,k-1\}$ et pour tout $s \in \{0,...,2k-1\}$, si l'on note $M_{r,s}$ le point de P d'affixe $z_G + e^{i\pi(2r+s)/k}c + e^{-i\pi(2r+s)/k}d$ et $\Omega_{r,s}$ le point de P d'affixe $e^{i\pi(2r+s)/k}$, on a $\overline{GM_{r,s}} = v(\overline{O\Omega_{r,s}})$.
- b) Notons w l'application de P dans P définie par : $\forall \Omega \in P$, $w(\Omega) = G + v(\overrightarrow{O\Omega})$. Montrer que w est une application affine de P dont l'application linéaire associée est v. Montrer que l'image du cercle de centre O et de rayon 1 par l'application affine w est ou bien une ellipse de centre G ou bien une partie bornée d'une droite passant par G.
- III.B.6) Interpréter géométriquement les résultats des questions III.B.3, III.B.4 et III.B.5, relativement à la suite des polygones $(p_n)_{n\in\mathbb{N}}$.

••• FIN •••