MATHÉMATIQUES II

Notations et objectifs du problème

Dans tout ce problème, E est un espace vectoriel euclidien de dimension $d \ge 1$. Le produit scalaire de deux vecteurs u et v de E est noté (u|v), la norme du vecteur u est notée ||u||.

L'espace des endomorphismes de E est noté L(E). Le composé de deux éléments f et g de L(E) est noté indifféremment fg ou $f\circ g$ et l'identité I_E . L'adjoint de f est noté f^* ; on rappelle qu'il est caractérisé par la propriété suivante :

$$\forall (u,v) \in E^2, (f(u)|v) = (u|f^*(v)).$$

Si f est un élément de L(E), Tr(f) désigne la trace de f. Le composé de p exemplaires de f est noté f^p (avec, par convention, $f^0 = I_E$). Si F est un sous espace de E stable par f, l'endomorphisme induit par f sur F est noté f_F .

On notera S(E) l'ensemble des endomorphismes symétriques (ou autoadjoints) de E et $S^+(E)$ le sous ensemble de S(E) constitué des endomorphismes symétriques dont les valeurs propres sont positives.

On rappelle que, si $t\mapsto x(t)$ est une application de IR dans E et $(e)=(e_1,e_2,...,e_d)$ une base de E, par rapport à laquelle les coordonnées de x(t) sont $x_1(t)$, $x_2(t)$, ..., $x_d(t)$:

$$\forall t \in \mathbb{IR}, x(t) = \sum_{i=1}^{d} x_i(t)e_i$$

alors x est de classe C^k sur \mathbb{R} , si et seulement si, pour tout entier $i \in \{1, 2, ..., d\}$ l'application $t \mapsto x_i(t)$ est une application de classe C^k de \mathbb{R} dans \mathbb{R} .

Soit f un élément de L(E) et x_0 un élément de E . On considère l'équation

$$\mathcal{P}(f, x_0) \begin{cases} \frac{dx}{dt} = f(x) \\ x(0) = x_0 \end{cases}$$

dont l'inconnue x est la fonction $t \mapsto x(t)$ de classe C^1 de \mathbb{R} dans E.

On rappelle que, pour tout x_0 de E , il existe une unique solution de $\mathscr{P}(f,x_0)$. On l'appelle f-trajectoire de x_0 .

Filière PSI

Afin d'alléger la rédaction, on conviendra que toute propriété géométrique d'une trajectoire x concerne en réalité l'ensemble $x(\mathbb{R}) = \{x(t)|t \in \mathbb{R}\}$; par exemple, on dira que la trajectoire x est un cercle si $x(\mathbb{R})$ est un cercle.

On désigne par B(E) l'ensemble des f, éléments de L(E), tels que toutes les f-trajectoires sont bornées, c'est-à-dire sont telles que, quel que soit le choix de x_0 , il existe un réel $M \ge 0$, dépendant de x_0 , pour lequel on a :

$$\forall t \in \mathbb{R}, \|x(t)\| \leq M$$

si x désigne la f-trajectoire de x_0 .

De même, on note SP(E) l'ensemble des f, éléments de L(E), tels que toutes les f-trajectoires sont sphériques, c'est-à-dire sont telles que, quel que soit le choix de x_0 , il existe un élément $\gamma \in E$ et un réel $r \ge 0$, dépendants de x_0 , pour lesquels on a :

$$\forall t \in \mathbb{R}, \|x(t) - \gamma\| = r,$$

si x désigne la f-trajectoire de x_0 .

L'objectif du problème est de caractériser les ensembles B(E) et SP(E).

Partie I - Étude de trajectoires

- **I.A** Soit F un sous-espace de E, stable par f. Montrer que si $x_0 \in F$, la f-trajectoire de x_0 est contenue dans F.
- **I.B** Soit f un élément de L(E), x_0 un vecteur propre de f associé à la valeur propre λ et x la f-trajectoire de x_0 . Exprimer x(t) en fonction de x_0 , λ , t.
- **I.C** Soit f un élément de L(E), x_0 un élément de $\ker f^2$ n'appartenant pas à $\ker f$ et x la f-trajectoire de x_0 . Exprimer x(t) en fonction de x_0 , $f(x_0)$, t et préciser la nature géométrique de cette trajectoire.
- **I.D** Soit f un élément de L(E), x_0 un élément de $E \{0\}$. On suppose qu'il existe un réel ϕ n'appartenant pas à $\pi \mathbb{Z}$ et un réel k strictement positif tels que

$$(f^2 - 2k\cos\phi f + k^2I_E)(x_0) = 0$$
.

On note $t \mapsto x(t)$ la f-trajectoire de x_0 .

I.D.1) Montrer que la famille $(x_0, f(x_0))$ est libre et justifier l'existence de deux applications u et v de IR dans E, telles que

$$\forall t \in \mathbb{IR}, x(t) = u(t)x_0 + v(t)f(x_0).$$

- I.D.2) Montrer que u et v sont de classe C^2 . Former une équation différentielle linéaire du second ordre, avec deux conditions initiales, vérifiée par u. En déduire l'expression de u.
- I.D.3) Montrer que x est bornée si et seulement si $\cos \phi = 0$. Dans ce cas, décrire géométriquement la f-trajectoire x. À quelles conditions cette trajectoire est-elle un cercle ?
- **I.E** Soit k un réel strictement positif, f un élément de L(E), $g = f^2 + k^2 I_E$ et x_0 un élément de Ker g^2 . On désigne par G la famille

$$G = \{x_0, f(x_0), g(x_0), gf(x_0)\}.$$

- I.E.1) Montrer que F = vect(G) est stable par f.
- I.E.2) Montrer que G est libre si et seulement si $g(x_0) \neq 0$.
- I.E.3) On suppose que $g(x_0) \neq 0$. Montrer que la f-trajectoire de x_0 peut s'écrire sous la forme :

$$x(t) = u(t)x_0 + v(t)f(x_0) + w(t)g(x_0) + h(t)gf(x_0)$$
.

Déterminer u(t), v(t), puis w(t), puis h(t). Montrer que cette trajectoire n'est pas bornée.

Partie II - Étude des endomorphismes à trajectoires bornées

Dans les questions II.A à II.D incluses, f désigne un endomorphisme de E tel que toutes les f-trajectoires sont bornées : $f \in B(E)$.

- **II.A** Soit λ une valeur propre réelle de f. Montrer que $\lambda = 0$.
- **II.B** Montrer que Ker $f = \text{Ker } f^2$ et $E = \text{Im } f \oplus \text{Ker } f$.
- **II.C** Exhiber, sans démonstration, un polynôme non nul, à coefficients réels, qui annule f. Démontrer qu'il existe un polynôme unitaire à coefficient réel qui est de degré minimal parmi les polynômes non nuls de $\mathbb{R}[X]$ annulant f.

Dans toute la suite de la section II.C, ce polynôme est noté ${\it P}$.

- II.C.1) Soit Q ($Q \in \mathbb{R}[X]$) un diviseur non constant de P. Montrer que Q(f) ne peut être inversible.
- II.C.2) On suppose que P admet une racine réelle λ . Montrer que $\lambda=0$ et, en s'aidant de la question II.B, que l'ordre de multiplicité de cette racine dans P est égal à 1 .

- II.C.3) Que dire de f si P est scindé sur \mathbb{R} ?
- II.C.4) On suppose que P possède une racine complexe λ non réelle. On écrit λ sous forme trigonométrique : $\lambda = ke^{i\phi}$, avec k et ϕ réels, k>0 et ϕ n'appartenant pas à $\pi \mathbb{Z}$. Démontrer qu'il existe un vecteur $x_0 \neq 0$ tel que : $(f^2 2k(\cos\phi)f + k^2I_E)(x_0) = 0$. En déduire la valeur de $\cos\phi$. Qu'en conclure sur les racines non réelles de P?
- II.C.5) Soit k > 0, montrer que $\operatorname{Ker}(f^2 + k^2 I_E)^2 = \operatorname{Ker}(f^2 + k^2 I_E)$.
- II.C.6) On suppose $f \neq 0$; démontrer qu'il existe un entier $s \geq 1$ et des réels $a_1, a_2, ..., a_s$ strictement positifs et distincts tels que P soit de l'une ou l'autre des deux formes suivantes :

$$P = \prod_{i=1}^{s} (X^2 + a_i^2)$$
 ou $X \prod_{i=1}^{s} (X^2 + a_i^2)$.

- $\mathbf{II.D}$ Prouver que f vérifie les deux propriétés suivantes :
- i) L'endomorphisme f^2 est diagonalisable et ses valeurs propres sont des réels négatifs ou nuls.
- ii) $\operatorname{rg} f = \operatorname{rg} f^2$.

Prouver que les dimensions des sous-espaces propres de f^2 associés à ses valeurs propres strictement négatives sont paires.

II.E - Réciproquement soit f un élément de L(E), non nul et vérifiant les deux propriétés i) et ii) de la question II.D). Établir l'existence d'un entier s strictement positif, de s sous-espaces $E_1, E_2, ..., E_s$ tous non réduits à $\{0\}$, de dimensions paires et stables par f et de s réels $a_1, a_2, ..., a_s$, strictement positifs et distincts, tels que :

$$\operatorname{Ker} f \oplus \left[\begin{array}{c} s \\ \vdots \\ i = 1 \end{array} \right] = E \tag{1}$$

$$\forall i \in \{1, ..., s\}, \ \forall x \in E_i, f^2(x) = -a_i^2 x$$
 (2)

Étudier la f-trajectoire d'un vecteur appartenant à l'un des E_i et en conclure que $f \in B(E)$.

Partie III - Étude des endomorphismes à trajectoires sphériques

III.A -

III.A.1) Soit f un élément de L(E). Prouver l'équivalence des deux propriétés suivantes :

- a) $f^* + f = 0$
- b) $\forall u \in E$, (u|f(u)) = 0.

Un endomorphisme vérifiant l'une de ces deux propriétés est appelé endomorphisme antisymétrique de E. L'ensemble de ces endomorphismes est noté A(E).

- III.A.2) Soit f un élément de A(E) et x une f-trajectoire associée ; calculer la dérivée de la fonction $t \mapsto ||x(t)||^2$. Montrer que $A(E) \subseteq SP(E)$.
- ${\bf III.B}$ Soit f un élément de SP(E) et F un sous-espace de E stable par F . Montrer que f_F est élément de SP(F) .
- **III.C** Montrer que $SP(E) \subset B(E)$.
- **III.D** Dans cette section III.D, E est de dimension 2 et f est un élément non nul de SP(E) .
- III.D.1) Démontrer que f^2 est une homothétie de rapport strictement négatif.
- III.D.2) Soit x_0 un élément de $E-\{0\}$ et a le centre d'un cercle contenant la f-trajectoire de x_0 . Justifier que a peut s'écrire sous la forme $\alpha x_0 + \beta f(x_0)$ et prouver que $(x_0|f(x_0))=0$.
- III.D.3) Prouver que A(E) = SP(E).
- **III.E** Dans cette section III.E, *E* est un espace vectoriel orienté de dimension 3.
- Soit ω un élément de $E-\{0\}$ et v un vecteur de E orthogonal à ω . On définit l'endomorphisme ψ de E par $\psi: u \mapsto \omega \wedge u + (u \mid \omega)v$.
- III.E.1) Montrer que ψ est antisymétrique si et seulement si v=0.
- III.E.2) Montrer que si v est non nul, ψ appartient à SP(E).

On pourra commencer par prouver que pour tout x_0 de E, si x désigne la f-trajectoire de x_0 , $(x|\omega)$ est constant et l'on cherchera le centre de la sphère sous la forme $\alpha(\omega + \omega \wedge v)$, où α est une constante à déterminer.

On se propose de prouver que tout endomorphisme f élément de SP(E), $non\ nul$ est de la même forme que ψ .

III.E.3) Soit f un élément de $SP(E) - \{0\}$. Établir que f^2 n'admet qu'une seule valeur propre strictement négative, notée $-\mu^2$ et que Im $f = \text{Ker}(f^2 + \mu^2 I_E)$.

III.E.4) En déduire l'existence d'une base orthonormée de E où la matrice de f est de la forme

$$\left(\begin{array}{ccc}
0 & -\mu & b \\
\mu & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

et conclure.

III.F - On suppose, dans cette question, que f, élément de SP(E), vérifie $f^2 = -\mu^2 I_E$ où $\mu > 0$. À l'aide des résultats des questions III.B et III.D, montrer que f est antisymétrique.

III.G - Démontrer que, dans le cas général, SP(E) est constitué des endomorphismes $f \in L(E)$ qui vérifient les deux propriétés suivantes :

- i) $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.
- ii) L'endomorphisme induit par f sur Im f est antisymétrique.

Ces deux conditions étant supposées réalisées, préciser géométriquement en fonction de x_0 élément de E, le centre d'une sphère qui contient la f-trajectoire de x_0 .

