

Mathématiques II

PC

2010

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

Les parties I et II sont indépendantes. La partie III est pour une large part indépendante des deux autres.

I Systèmes de racines

Les systèmes de racines interviennent dans divers domaines des mathématiques et en cristallographie.

Le couple $(E, \langle ., . \rangle)$ désigne un espace euclidien de dimension $n \geq 1$. On note $\|.\|$ la norme associée au produit scalaire $\langle ., . \rangle$. On rappelle qu'une *réflexion* de E est une symétrie orthogonale par rapport à un hyperplan de E. Pour tout élément α non nul de E, on note τ_{α} la réflexion de E par rapport à l'orthogonal de la droite $\operatorname{Vect}(\alpha)$.

I.A – Soit α un élément non nul de E. Montrer, pour tout vecteur x de E, l'identité :

$$\tau_{\alpha}(x) = x - 2 \frac{\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} \alpha$$

Pour tout sous-espace vectoriel F de E, on appelle système de racines de F une partie non vide \mathcal{R} de F vérifiant les quatre propriétés suivantes :

- 1. \mathcal{R} est fini, engendre F et ne contient pas le vecteur nul;
- 2. pour tout α dans \mathcal{R} , on a $\tau_{\alpha}(\mathcal{R}) = \mathcal{R}$;
- 3. pour tout α dans \mathcal{R} , les seuls éléments de \mathcal{R} colinéaires à α sont α et $-\alpha$;
- 4. pour tout couple (α, β) dans \mathbb{R}^2 , on a $2\frac{\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.
- I.B On suppose dans cette question que l'espace E est de dimension 1.

Montrer que les systèmes de racines de E sont les ensembles $\{\alpha, -\alpha\}$, avec $\alpha \in E \setminus \{0\}$.

I.C – Dans cette question, l'espace E est de dimension $n \geq 2$.

Pour tout couple (α, β) de vecteurs non nuls de E, soit $\theta_{\alpha,\beta}$ l'angle géométrique entre α et β , c'est-à-dire l'unique élément de $[0, \pi]$ donné par : $\|\alpha\| \cdot \|\beta\| \cos \theta_{\alpha,\beta} = \langle \alpha, \beta \rangle$.

- **I.C.1)** Soit \mathcal{R} un système de racines de E et soient α, β deux éléments de \mathcal{R} non colinéaires.
- $a) \quad \text{ Montrer, à l'aide de la propriété 4, que : } 2\frac{\|\alpha\|}{\|\beta\|} \left|\cos\theta_{\alpha,\beta}\right|.2\frac{\|\beta\|}{\|\alpha\|} \left|\cos\theta_{\alpha,\beta}\right| \leq 3.$
- b) On suppose $\|\alpha\| \le \|\beta\|$. Montrer que le couple (α, β) se trouve dans l'une des configurations recensées dans le tableau ci-dessous (chaque ligne correspondant à une configuration) :

$\theta_{lpha,eta}$	$\cos \theta_{\alpha,\beta}$	$\ \beta\ /\ \alpha\ $
$\pi/2$	0	≥ 1
$\pi/3$	1/2	1
$2\pi/3$	-1/2	1
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}$
$3\pi/4$	$-\sqrt{2}/2$	$\sqrt{2}$
$\pi/6$	$\sqrt{3}/2$	$\sqrt{3}$
$5\pi/6$	$-\sqrt{3}/2$	$\sqrt{3}$

- **I.C.2)** Réciproquement, on suppose qu'un couple (α, β) de vecteurs non colinéaires de E se trouve dans l'une des configurations recensées dans le tableau ci-dessus. Montrer que le réel $2\frac{\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle}$ est un entier relatif; en préciser la valeur.
- I.D Dans cette question, l'espace E est de dimension n=2.

Pour tout système de racines \mathcal{R} de E, on pose

$$\theta_{\mathcal{R}} = \min\{\theta_{\alpha,\beta} \mid (\alpha,\beta) \in \mathcal{R}^2, \, \alpha \neq \beta \text{ et } \alpha \neq -\beta\}$$

- **I.D.1)** Montrer que $\theta_{\mathcal{R}}$ est bien défini et est égal à $\pi/2$, $\pi/3$, $\pi/4$ ou $\pi/6$.
- **I.D.2)** Pour chaque valeur de $k \in \{2, 3, 4, 6\}$, représenter graphiquement un système de racines \mathcal{R}_k tel que $\theta_{\mathcal{R}_k} = \pi/k$. Il n'est pas nécessaire de justifier que les figures tracées représentent bien des systèmes de racines. Quel est le cardinal de \mathcal{R}_k ? Aucune justification n'est attendue.
- I.E Dans cette question, l'espace E est de dimension n=3.

Soient (e_1, e_2, e_3) une base orthonormale de E et $\mathcal{R}_0 = \{e_i - e_j \mid 1 \leq i, j \leq 3, i \neq j\}$.

- **I.E.1)** Montrer que le sous-espace vectoriel de E engendré par la partie \mathcal{R}_0 est un plan vectoriel.
- **I.E.2)** Représenter graphiquement \mathcal{R}_0 dans le plan $\operatorname{Vect}(\mathcal{R}_0)$. Reconnaître l'un des systèmes de racines représentés à la question I.D.2.

II Propriétés de $\mathcal{M}_0(n, \mathbb{K})$

- La lettre n désigne un entier supérieur ou égal à 1.
- On note K le corps des nombres réels ou le corps des nombres complexes.
- On note respectivement $\mathcal{M}(n,\mathbb{K})$, $GL(n,\mathbb{K})$, $\mathcal{D}(n,\mathbb{K})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients dans \mathbb{K} , le groupe des matrices inversibles de $\mathcal{M}(n,\mathbb{K})$, le sous-espace vectoriel de $\mathcal{M}(n,\mathbb{K})$ formé des matrices diagonales.
- On désigne par $\mathcal{M}_0(n, \mathbb{K})$ l'ensemble des matrices de $\mathcal{M}(n, \mathbb{K})$ de trace nulle.
- On note I_n la matrice identité et 0 la matrice nulle de $\mathcal{M}(n, \mathbb{K})$.
- On dit qu'une matrice A de $\mathcal{M}(n, \mathbb{K})$ est nilpotente s'il existe un entier naturel non nul r tel que $A^r = 0$. De la même manière, on dit qu'un endomorphisme f est nilpotent s'il existe un entier naturel non nul r tel que $\underbrace{f \circ \cdots \circ f}_{c} = 0$.
- Pour tout couple (A, B) d'éléments de $\mathcal{M}(n, \mathbb{K})$, le crochet [A, B] est défini par [A, B] = AB BA.
- Pour tout $A \in \mathcal{M}(n, \mathbb{K})$, on définit l'endomorphisme

$$\begin{array}{ccc} \Phi_A: \mathcal{M}(n,\mathbb{K}) & \longrightarrow & \mathcal{M}(n,\mathbb{K}) \\ B & \longmapsto & [A,B] \end{array}$$

• On dit qu'un triplet (X, H, Y) de trois matrices non nulles de $\mathcal{M}(n, \mathbb{K})$ est un triplet admissible si les trois relations suivantes sont vérifiées :

$$[H,X] = 2X$$
 ; $[X,Y] = H$; $[H,Y] = -2Y$

On pose:

$$X_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad ; \quad H_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad ; \quad Y_0 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad ; \quad J_0 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

II.A - Généralités

- **II.A.1**) Montrer que $\mathcal{M}_0(n, \mathbb{K})$ est un \mathbb{K} -espace vectoriel; en préciser la dimension.
- **II.A.2)** Justifier que, pour tout couple (A, B) d'éléments de $\mathcal{M}(n, \mathbb{K})$, la matrice [A, B] appartient à $\mathcal{M}_0(n, \mathbb{K})$.

II.B - Un isomorphisme

Montrer que l'application

$$j: \quad \mathbb{K}^3 \quad \longrightarrow \quad \mathcal{M}_0(2, \mathbb{K})$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad \longmapsto \quad \begin{pmatrix} x & y+z \\ y-z & -x \end{pmatrix}$$

est un isomorphisme de K-espaces vectoriels.

II.C - Caractérisation des matrices nilpotentes

Soit A une matrice non nulle de $\mathcal{M}_0(2,\mathbb{K})$. Montrer que les propriétés suivantes sont équivalentes :

- i. La matrice A est nilpotente;
- ii. Le spectre de A est égal à $\{0\}$;
- iii. La matrice A est semblable à la matrice $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

II.D - Le cas complexe

On suppose dans cette question que \mathbb{K} est égal à \mathbb{C} .

- **II.D.1)** Montrer que deux matrices non nulles de $\mathcal{M}_0(2,\mathbb{C})$ sont semblables si et seulement si elles ont le même polynôme caractéristique.
- **II.D.2)** Ce résultat reste-t-il vrai pour deux matrices non nulles de $\mathcal{M}_0(n,\mathbb{C})$, avec $n \geq 3$?

II.E - Le cas réel

On suppose dans cette question que \mathbb{K} est égal à \mathbb{R} .

- **II.E.1)** Soit A une matrice de $\mathcal{M}_0(2,\mathbb{R})$. On suppose que son polynôme caractéristique vaut $X^2 + r^2$, où r est un réel non nul.
- a) Justifier l'existence d'une matrice $P \in GL(2,\mathbb{C})$ vérifiant : $irH_0 = P^{-1}AP$. Que vaut la matrice $A^2 + r^2I_2$?

- b) Soit f l'endomorphisme de \mathbb{R}^2 canoniquement associé à la matrice A, c'est-à-dire qui à un vecteur colonne u de \mathbb{R}^2 associe le vecteur Au. Soit w un vecteur non nul de \mathbb{R}^2 . Prouver que la famille $\left(\frac{1}{r}f(w),w\right)$ est une base de \mathbb{R}^2 , et donner la matrice de f dans cette base.
- II.E.2) Montrer que deux matrices non nulles de $\mathcal{M}_0(2,\mathbb{R})$ sont semblables dans $\mathcal{M}(2,\mathbb{R})$ si et seulement si elles ont le même polynôme caractéristique.
- II.E.3) On munit l'espace vectoriel \mathbb{R}^3 de sa structure affine euclidienne canonique et de son repère canonique. Pour toute matrice A de $\mathcal{M}_0(2,\mathbb{R})$, on note \mathcal{Q}_A l'ensemble des points de \mathbb{R}^3 dont l'image par l'application j possède le même polynôme caractéristique que A.
- a) Soit r un réel strictement positif. Montrer que chacune des parties \mathcal{Q}_{X_0} , \mathcal{Q}_{rJ_0} et \mathcal{Q}_{rH_0} est une quadrique dont on précisera une équation.
- b) Représenter graphiquement l'allure des quadriques Q_{X_0}, Q_{J_0} et Q_{H_0} sur un même dessin.

II.F - Un lemme

Soient A, B et M trois éléments de $\mathcal{M}_0(2, \mathbb{K})$.

- **II.F.1)** Exprimer la trace de la matrice M^2 en fonction du déterminant de M.
- II.F.2) Démontrer que la matrice M est nilpotente si et seulement si la trace de la matrice M^2 est nulle.
- **II.F.3)** On suppose que les matrices A et [A, B] commutent.

Démontrer que la matrice [A, B] est nilpotente.

$\emph{II.G}$ - $\emph{Description des triplets admissibles de } \mathcal{M}_0(2,\mathbb{K})$

- **II.G.1)** Déterminer les matrices M de $\mathcal{M}(2,\mathbb{K})$ qui commutent avec X_0 . Quelles sont les matrices M de $\mathcal{M}_0(2,\mathbb{K})$ qui commutent avec X_0 ?
- II.G.2) Soit P une matrice de $GL(2, \mathbb{K})$. Vérifier que $(PX_0P^{-1}, PH_0P^{-1}, PY_0P^{-1})$ est un triplet admissible. On se propose de démontrer que, réciproquement, tous les triplets admissibles de $\mathcal{M}_0(2, \mathbb{K})$ sont de cette forme. Pour toute la suite de la question II.G, soient X, H, Y trois éléments de $\mathcal{M}_0(2, \mathbb{K})$ tels que (X, H, Y) forme un triplet admissible.
- **II.G.3)** Montrer en utilisant les questions II.F et II.C qu'il existe une matrice $Q \in GL(2, \mathbb{K})$ vérifiant $X = QX_0Q^{-1}$.

On fixe pour la suite de la question II.G une telle matrice $Q \in GL(2, \mathbb{K})$.

- **II.G.4)** On définit les vecteurs $u = Q\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $v = Q\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
- a) En calculant le vecteur [H, X]u de deux manières différentes, démontrer que u est un vecteur propre de la matrice H.
- b) En calculant le vecteur [H,X]v de deux manières différentes, prouver l'existence d'un scalaire t vérifiant l'identité : $H=Q\begin{pmatrix} 1 & t \\ 0 & -1 \end{pmatrix}Q^{-1}$.
- c) Trouver une matrice $T \in GL(2, \mathbb{K})$ commutant avec X_0 et vérifiant la relation $H = QTH_0(QT)^{-1}$. On pose désormais P = QT.
- **II.G.5**) Soit $Y' \in \mathcal{M}_0(2, \mathbb{K})$ telle que (X, H, Y') soit un triplet admissible.
- a) Déduire de la question II.G.1 les matrices de $\mathcal{M}_0(2,\mathbb{K})$ qui commutent avec X.
- b) Calculer les matrices $\Phi_X(Y-Y')$ et $\Phi_H(Y-Y')$.
- c) En déduire que l'on a Y' = Y.
- **II.G.6)** Démontrer l'identité $(X, H, Y) = (PX_0P^{-1}, PH_0P^{-1}, PY_0P^{-1}).$

III Systèmes de racines et triplets admissibles d'un sous-espace de $\mathcal{M}(n, \mathbb{K})$

III.A - Diagonalisation simultanée

Soit V un \mathbb{K} -espace vectoriel de dimension finie non nulle.

- **III.A.1)** Soient f un endomorphisme de V diagonalisable et W un sous-espace non nul de V stable par f. Montrer que l'endomorphisme de W induit par f est diagonalisable.
- **III.A.2)** Soient f et g deux endomorphismes de V qui commutent, c'est-à-dire tels que $f \circ g = g \circ f$. Montrer que les sous-espaces propres de f sont stables par g.
- **III.A.3)** Soit I un ensemble non vide et soit $\{f_i \mid i \in I\}$ une famille d'endomorphismes de V diagonalisables commutant deux à deux. Montrer qu'il existe une base de V dans laquelle les matrices des endomorphismes f_i , pour $i \in I$, sont diagonales. Indication: on pourra traiter d'abord le cas où tous les endomorphismes f_i sont des homothéties, puis raisonner par récurrence sur la dimension de V.

III.B - Application

On reprend dans cette partie les notations de la partie II.

Soit \mathcal{A} un sous-espace vectoriel non nul de $\mathcal{M}(n,\mathbb{K})$ stable par crochet, c'est-à-dire vérifiant :

$$\forall (A, B) \in \mathcal{A} \times \mathcal{A}, [A, B] \in \mathcal{A}$$

On note \mathcal{E} l'intersection de \mathcal{A} et $\mathcal{D}(n, \mathbb{K})$.

III.B.1) Soit H un élément de \mathcal{E} .

- Calculer l'image par Φ_H de la base canonique de $\mathcal{M}(n,\mathbb{K})$. En déduire que Φ_H est un endomorphisme diagonalisable de $\mathcal{M}(n, \mathbb{K})$.
- Montrer qu'il existe une base de \mathcal{A} dans laquelle les matrices des endomorphismes de \mathcal{A} induits par les Φ_H , pour $H \in \mathcal{E}$, sont diagonales.

Pour toute application λ de \mathcal{E} dans \mathbb{K} , on pose :

$$\mathcal{A}_{\lambda} = \{ M \in \mathcal{A} \mid \Phi_H(M) = \lambda(H)M \text{ pour tout } H \in \mathcal{E} \}$$

Soit λ une application de \mathcal{E} dans \mathbb{K} .

- Montrer que A_{λ} est un sous-espace vectoriel de A.
- Montrer que si \mathcal{A}_{λ} est non réduit à $\{0\}$, alors λ est une forme linéaire de \mathcal{E} .

On note \mathcal{E}^* l'espace vectoriel des formes linéaires de \mathcal{E} et $\mathcal{S}(\mathcal{A})$ l'ensemble des éléments λ de $\mathcal{E}^* \setminus \{0\}$ tels que \mathcal{A}_{λ} est différent de $\{0\}$.

III.C - Un exemple

On reprend dans cette question les notations des parties I et II ainsi que de la question III.B. On suppose désormais

$$\mathcal{A} = \left\{ \begin{pmatrix} A & B \\ C & -{}^t A \end{pmatrix} \mid (A, B, C) \in (\mathcal{M}(2, \mathbb{R}))^3, B = {}^t B \text{ et } C = {}^t C \right\}$$

où, pour tout $M \in \mathcal{M}(2,\mathbb{R})$, le symbole tM désigne la transposée de M.

On a donc
$$\mathcal{E} = \left\{ \begin{pmatrix} D & 0 \\ 0 & -D \end{pmatrix} \mid D \in \mathcal{D}(2, \mathbb{R}) \right\}.$$

Montrer que \mathcal{A} est un sous-espace vectoriel de $\mathcal{M}(4,\mathbb{R})$ stable par crochet. Montrer qu'on a $\mathcal{A}_0 = \mathcal{E}$, où \mathcal{A}_0 désigne \mathcal{A}_{λ} lorsque λ est la forme linéaire nulle. Donner une base de \mathcal{A}_0 .

III.C.2) Pour $k \in \{1, 2\}$, on note e_k l'élément de \mathcal{E}^* qui à toute matrice $\begin{pmatrix} D & 0 \\ 0 & -D \end{pmatrix}$, où $D = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} \in \mathcal{D}(2, \mathbb{R})$, associe le coefficient d_k .

où
$$D = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} \in \mathcal{D}(2, \mathbb{R})$$
, associe le coefficient d_k .

a) Vérifier que (e_1, e_2) forme une base de \mathcal{E}^* .

On munit \mathcal{E}^* de l'unique produit scalaire faisant de (e_1, e_2) une base orthonormale.

- Soit $\mathcal{R} = \{e_1 e_2, e_2 e_1, e_1 + e_2, -e_1 e_2, 2e_1, -2e_1, 2e_2, -2e_2\}$. Montrer que l'ensemble \mathcal{R} est un système de racines de \mathcal{E}^* . On pourra pour cela dessiner la partie \mathcal{R} dans le plan euclidien \mathcal{E}^* et reconnaître l'un des systèmes de racines rencontrés dans la question I.D
- III.C.3) Soit $\alpha \in \mathcal{R}$. Déterminer par le calcul le sous-espace vectoriel \mathcal{A}_{α} . Vérifier que \mathcal{A}_{α} est une droite vectorielle.
- Établir la relation $\mathcal{A} = \mathcal{A}_0 \oplus \bigoplus \mathcal{A}_{\alpha}$. III.C.4)
- Démontrer l'égalité $\mathcal{S}(\mathcal{A}) = \mathcal{R}$. III.C.5)

$$\textbf{III.C.6)} \quad \text{ On pose désormais } \alpha = e_1 - e_2, \ \beta = 2e_2, \ H_\alpha = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ et } H_\beta = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

En utilisant les résultats de la question III.C.3, montrer qu'il existe un couple $(X_{\alpha}, X_{-\alpha}) \in \mathcal{A}_{\alpha} \times \mathcal{A}_{-\alpha}$ et un couple $(X_{\beta}, X_{-\beta}) \in \mathcal{A}_{\beta} \times \mathcal{A}_{-\beta}$ tels que $(X_{\alpha}, H_{\alpha}, X_{-\alpha})$ et $(X_{\beta}, H_{\beta}, X_{-\beta})$ soient des triplets admissibles de \mathcal{A} .

On fixe deux tels triplets admissibles.

Montrer que A est le plus petit sous-espace vectoriel de $\mathcal{M}(4,\mathbb{R})$ stable par crochet et contenant les matrices X_{α} , H_{α} , $X_{-\alpha}$, X_{β} , H_{β} et $X_{-\beta}$.