CONCOURS CENTRALE-SUPÉLEC

Mathématiques 2

Oral

 MP

Les questions qui utilisent Python sont indiquées par le signe [P]. Une question marquée [P?] signifie qu'on peut utiliser Python, mais qu'il sera éventuellement demandé des explications mathématiques complémentaires.

Soit $A=(a_{i,j})_{1\leqslant i,j\leqslant n}$ une matrice quel conque de $\mathcal{M}_n(\mathbb{R}),$ avec n dans $\mathbb{N}^*.$

On appelle centro-tranpos'ee de A la matrice \widehat{A} de $\mathcal{M}_n(\mathbb{R})$ de terme général $\widehat{a}_{i,j}=a_{n+1-i,n+1-j}$

On appelle centro-transposition l'application $A \mapsto \widehat{A}$.

On note J_n la matrice de $\mathcal{M}_n(\mathbb{R})$ de terme général $\delta_{i,j} = \left\{ \begin{matrix} 1 & \text{si } j = n+1-i \\ 0 & \text{sinon} \end{matrix} \right.$

$$\text{Par exemple } (\text{si } n=4), \text{ on a } J_4 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \end{pmatrix} \text{ et si } A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \\ \end{pmatrix} \text{ alors } \widehat{A} = \begin{pmatrix} 16 & 15 & 14 & 13 \\ 12 & 11 & 10 & 9 \\ 8 & 7 & 6 & 5 \\ 4 & 3 & 2 & 1 \\ \end{pmatrix}.$$

- 1. a. [P] Écrire une fonction, sur le modèle def $J(n):\dots$ renvoyant la matrice J_n .
 - b. [P] Écrire une fonction randMatrix (d'arguments n, p) et renvoyant une matrice pseudo-aléatoire de taille $n \times p$, à coefficients dans l'intervalle d'entiers [0, 100].

Utiliser cette fonction pour conjecturer le rapport entre J_n et l'application $A\mapsto \widehat{A}.$

Justifier mathématiquement le résultat conjecturé.

- c. [P] Écrire une fonction, sur le modèle def centro(A) : . . . , d'argument une matrice A et renvoyant \widehat{A} .
- 2. a. Montrer que l'application $A\mapsto \widehat{A}$ est un automorphisme involutif de $\mathcal{M}_n(\mathbb{R})$.
 - b. Montrer que $\forall (A,B) \in \mathcal{M}_n(\mathbb{R})^2, \widehat{AB} = \widehat{AB}$ et que $\forall A \in \mathrm{GL}_n(\mathbb{R}), \widehat{A^{-1}} = \widehat{A}^{-1}.$
 - c. Montrer que pour toute matrice de $\mathcal{M}_n(\mathbb{R}),$ on a $\widehat{{}^tA}={}^t\widehat{A}.$

On peut donc dire que la centro-transposition commute avec la transposition.

- d. Montrer que pour toute matrice de $\mathcal{M}_n(\mathbb{R})$, on a det $\widehat{A} = \det A$.
- $3. \ \ \text{On d\'efinit} \ \begin{cases} \mathcal{C}_n^+ = \{A \in \mathcal{M}_n(\mathbb{R}), \widehat{A} = A\} & \text{(matrices \ll centro-sym\'etriques \gg)} \\ \mathcal{C}_n^- = \{A \in \mathcal{M}_n(\mathbb{R}), \widehat{A} = -A\} & \text{(matrices \ll centro-antisym\'etriques \gg)} \end{cases}$
 - a. Montrer que \mathcal{C}_n^+ et \mathcal{C}_n^- sont deux sous-espaces supplémentaires de $\mathcal{M}_n(\mathbb{R}).$
 - b. Montrer que $\mathcal{M}_n(\mathbb{R})=(\mathcal{S}_n\cap\mathcal{C}_n^+)\oplus(\mathcal{S}_n\cap\mathcal{C}_n^-)\oplus(\mathcal{A}_n\cap\mathcal{C}_n^+)\oplus(\mathcal{A}_n\cap\mathcal{C}_n^-).$

Préciser la dimension des sous-espaces de cette somme directe (raisonner suivant la parité de n).

c. [P] Écrire une fonction, sur le modèle def decomp(A) : ... d'argument A et qui renvoie le quadruplet des composantes de A sur la somme directe précédente. Donner un exemple (non trivial).

- 4. Pour tout n de \mathbb{N}^* , on note Q_n la matrice d'ordre 2n définie par $Q_n = \begin{pmatrix} I_n & -J_n \\ J_n & I_n \end{pmatrix}$.
 - a. [P] Écrire une fonction, sur le modèle def $Q(n):\ldots$, renvoyant Q_n .
 - b. Montrer que la matrice $\frac{1}{\sqrt{2}}Q_n$ est orthogonale.
 - c. Soit M une matrice de \mathcal{C}_{2n}^+ , définie par blocs d'ordre n sous la forme $M=\begin{pmatrix}A&B\\C&D\end{pmatrix}$.

Déterminer une relation entre D et A d'une part, entre C et B d'autre part.

Former $N=\frac{1}{2}{}^tQ_nMQ_n.$ En déduire $\det M=\det(A+BJ_n)\det(A-BJ_n).$

5. [P?] Étudier la diagonalisabilité de $M=\begin{pmatrix} 4 & 1 & -9 & 6 \\ 3 & 2 & -4 & 1 \\ 1 & -4 & 2 & 3 \\ 6 & -9 & 1 & 4 \end{pmatrix}$.