

Oral

Mathématiques 2

PC

CONCOURS CENTRALE SUPÉLEC

Soit $(u_n)_{n\geqslant 1}$ une suite réelle. On dit que la suite $(u_n)_{n\geqslant 1}$ est équiré partie modulo 1 si pour tout $(a,b)\in [0,1]^2$ tel que $a\leqslant b$

$$\frac{1}{n}\operatorname{Card}\{k\in[1,n]/\{u_k\}\in[a,b]\}\xrightarrow[n\to\infty]{}b-a$$

où l'on a noté, pour tout réel x, $\{x\} = x - \lfloor x \rfloor$ sa partie fractionnaire. On pose, pour tout entier $n \geqslant 1$ et $(a,b) \in [0,1]^2$ tel que $a \leqslant b$,

$$c_n(a,b)=\operatorname{Card}\{k\in [\![1,n]\!]/\{u_k\}\in [a,b]\}$$

1. Soit
$$u = \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n \right)_{n \geqslant 1}$$
.

- a. Quel est l'ensemble des suites réelles w telles que, pour tout $n \in \mathbb{N}^*, \, w_{n+2} = w_n + w_{n+1}$?
- b. Montrer alors qu'il existe v de limite nulle telle que u+v soit à valeurs entières.
- c. En déduire que u n'est pas équirépartie.

2.

- a. Écrire une fonction Python d'arguments u, n et a, b permettant de calculer $c_n(a, b)$.
- b. On fixe ici $u = (\sqrt{n})_{n \geqslant 1}$ et [a, b] = [0, 1/2]. Faire afficher les 100 premiers termes de la suite $(c_n(a, b)/n)_{n \geqslant 1}$. Que conjecturez-vous?
- c. On fixe ici $u=(\ln n)_{n\geqslant 1}$ et [a,b]=[0,1/2]. Faire afficher les 100 premiers termes de la suite $\left(c_n(a,b)/n\right)_{n\geqslant 1}$. Que conjecturez-vous ?
- d. On fixe ici $u = \left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right)_{n\geqslant 1}$ et [a,b] = [0,1/2]. Faire afficher les 100 premiers termes de la suite $\left(c_n(a,b)/n\right)_{n\geqslant 1}$. Que constatez-vous ? Tester ensuite avec un autre choix de [a,b].
- 3. On montre désormais que $u=\left(\sqrt{n}\right)_{n\geqslant 1}$ est équiré partie modulo 1. Pour cela, on fixe deux réels a et b tels que $0\leqslant a\leqslant b<1$ ainsi qu'un entier $n\geqslant 3$.
 - a. Montrer que, si $k \in \llbracket 1, n \rrbracket$ est tel que $u_k \in [a, b]$ alors il existe $p \in \llbracket 1, \lfloor \sqrt{n} \rfloor \rrbracket$ tel que $(p+a)^2 \leqslant k \leqslant (p+b)^2$.
 - b. En déduire que $c_n(a,b)\leqslant \sum_{p=1}^{\lfloor \sqrt{n}\rfloor} (b^2-a^2+1+2p(b-a)).$
 - c. Réciproquement, montrer que si k est un entier tel qu'il existe $p \in [1, \lfloor \sqrt{n+1} 1 \rfloor]$ tel que $(p+a)^2 \le k \le (p+b)^2$ alors $u_k \in [a,b]$ et $k \in [1,n]$.
 - d. En déduire que

$$c_n(a,b)\geqslant \sum_{p=1}^{\lfloor \sqrt{n+1}\rfloor-1} \bigl(b^2-a^2-1+2p(b-a)\bigr)$$

e. Conclure que $\left(u_{n}\right)_{n\geqslant1}$ est équirépartie.