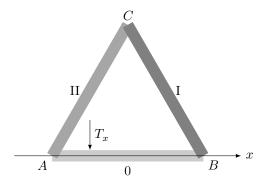
Oral


Physique 1

PC

Pont de mesure de T

On considère le dispositif représenté ci-dessous dans lequel les deux extrémités A et B sont maintenues aux températures stationnaires T_A et T_B . Les trois barres (d'indices 0, I et II) sont caractérisées respectivement par des sections d'aires respectives S_0 , $S_{\rm I}$ et $S_{\rm II}$ et par des conductivités thermiques λ_0 , $\lambda_{\rm I}$ et $\lambda_{\rm II}$ et de même longueur notée L_0 .

On note T_C la température à la jonction C et T_x la température en un point d'abscisse x de la barre 0, de longueur totale $L_0=20$ cm.

- 1. On mesure $T_x=T_C$ pour $x=4\,\mathrm{cm}.$ En déduire la conductivité thermique de la barre II.
- 2. Discuter l'effet des fuites thermiques vers l'atmosphère décrites par un coefficient de Newton h de l'ordre de $10\,\mathrm{W\cdot m^{-2}\cdot K^{-1}}$: la puissance thermique par unité de surface transférée d'un point à la température T vers l'extérieur à la température T_{ext} , notée P_{th} , vérifie

$$P_{\rm th} = h(T-T_{\rm ext})$$

Données numériques

les aires sont toutes égales à 1 cm²

les barres 0 et I sont en acier, pour lequel $\lambda = 50.2 \,\mathrm{W \cdot m^{-1} \cdot K^{-1}}$

$$T_A=273\:\mathrm{K}$$
et $T_B=373\:\mathrm{K}$