

Mathématiques 2

Oral

TSI

$$E = \mathbb{R}[X].$$

1. Soit n un entier positif ou nul. Montrer que lorsque $t \to +\infty$, $t^n e^{-t} = o\left(\frac{1}{t^2}\right)$.

En déduire que l'intégrale $I_n = \int\limits_0^{+\infty} t^n \mathrm{e}^{-t} \,\mathrm{d}t$ est convergente.

- 2. Calculer I_n pour n = 0, 1, ..., 8.
- 3. On considère l'application φ définie sur $E \times E$ par $\varphi(P,Q) = \int\limits_0^{+\infty} P(t)Q(t)\mathrm{e}^{-t}\,\mathrm{d}t$ où P et Q sont deux éléments de E.

Montrer que pour tous polynômes P et Q cette intégrale est bien convergente.

Montrer que φ est un produit scalaire.

On suppose désormais que E est muni de ce produit scalaire et on pose $\varphi(P,Q) = < P, Q >$.

4. On considère $F=\mathrm{Vect}(P_0,P_1,P_2)$ avec $P_0=1,\,P_1(X)=X$ et $P_2(X)=X^2.$

Construire une base orthonormale de F pour le produit scalaire défini précédemment à partir de la famille (P_0, P_1, P_2) .

5. Déterminer la projection orthogonale du polynôme constant P_3 défini par $P_3(X)=X^3$ sur F.